2,593 research outputs found

    A Study of the Dark Core in A520 with Hubble Space Telescope: The Mystery Deepens

    Full text link
    We present a Hubble Space Telescope/Wide Field Planetary Camera 2 weak-lensing study of A520, where a previous analysis of ground-based data suggested the presence of a dark mass concentration. We map the complex mass structure in much greater detail leveraging more than a factor of three increase in the number density of source galaxies available for lensing analysis. The "dark core" that is coincident with the X-ray gas peak, but not with any stellar luminosity peak is now detected with more than 10 sigma significance. The ~1.5 Mpc filamentary structure elongated in the NE-SW direction is also clearly visible. Taken at face value, the comparison among the centroids of dark matter, intracluster medium, and galaxy luminosity is at odds with what has been observed in other merging clusters with a similar geometric configuration. To date, the most remarkable counter-example might be the Bullet Cluster, which shows a distinct bow-shock feature as in A520, but no significant weak-lensing mass concentration around the X-ray gas. With the most up-to-date data, we consider several possible explanations that might lead to the detection of this peculiar feature in A520. However, we conclude that none of these scenarios can be singled out yet as the definite explanation for this puzzle.Comment: Published in ApJ. Figures are slightly degraded to meet the size limi

    Tracing the Peculiar Dark Matter Structure in the Galaxy Cluster CL 0024+17 with Intracluster Stars and Gas

    Full text link
    ICL is believed to originate from the stars stripped from cluster galaxies. They are no longer gravitationally bound to individual galaxies, but to the cluster, and their smooth distribution potentially makes them serve as much denser tracers of the cluster dark matter than the sparsely distributed cluster galaxies. We present our study of the ICL in Cl 0024+17 using both ACS and Subaru data, where we previously reported discovery of a ringlike dark matter structure with gravitational lensing. The ACS images provide much lower sky levels than ground data, and enable us to measure relative variation of surface brightness reliably. This analysis is repeated with the Subaru images to examine if consistent features are recovered despite different reduction scheme and instrumental characteristics. We find that the ICL profile clearly resembles the peculiar mass profile, which stops decreasing at r~50" (~265 kpc) and slowly increases until it turns over at r~75" (~397 kpc). This feature is seen in both ACS and Subaru images for nearly all available passband images while the features are stronger in red filters. The consistency across different filters and instruments strongly rules out the possibility that the feature might come from any residual, uncorrected calibration errors. In addition, our re-analysis of the cluster X-ray data shows that the peculiar mass structure is also indicated by a non-negligible bump in the intracluster gas profile when the geometric center of the dark matter ring, not the peak of the X-ray emission, is chosen as the center of the radial bin. The location of the gas ring is closer to the center by ~15" (~80 kpc), raising an interesting possibility that the ring-like structure is expanding and the gas ring is lagging behind perhaps because of the ram pressure if both features in mass and gas share the same dynamical origin.Comment: Accepted to ApJ for publicatio

    Dark Matter in the Galaxy Cluster CL J1226+3332 at Z=0.89

    Full text link
    We present a weak-lensing analysis of the galaxy cluster CL J1226+3332 at z=0.89 using Hubble Space Telescope Advanced Camera for Surveys images. The cluster is the hottest (>10 keV), most X-ray luminous system at z>0.6 known to date. The relaxed X-ray morphology, as well as its high temperature, is unusual at such a high redshift. Our mass reconstruction shows that on a large scale the dark matter distribution is consistent with a relaxed system with no significant substructures. However, on a small scale the cluster core is resolved into two mass clumps highly correlated with the cluster galaxy distribution. The dominant mass clump lies close to the brightest cluster galaxy whereas the other less massive clump is located ~40" (~310 kpc) to the southwest. Although this secondary mass clump does not show an excess in the X-ray surface brightness, the gas temperature of the region is much higher (12~18 keV) than those of the rest. We propose a scenario in which the less massive system has already passed through the main cluster and the X-ray gas has been stripped during this passage. The elongation of the X-ray peak toward the southwestern mass clump is also supportive of this possibility. We measure significant tangential shears out to the field boundary (~1.5 Mpc), which are well described by an Navarro-Frenk-White profile with a concentration parameter of c200=2.7+-0.3 and a scale length of rs=78"+-19" (~600 kpc) with chi^2/d.o.f=1.11. Within the spherical volume r200=1.6 Mpc, the total mass of the cluster becomes M(r<r200)=(1.4+-0.2) x 10^15 solar mass. Our weak-lensing analysis confirms that CL1226+3332 is indeed the most massive cluster known to date at z>0.6.Comment: Accepted for publication in Ap

    MC2^2: Multi-wavelength and dynamical analysis of the merging galaxy cluster ZwCl 0008.8+5215: An older and less massive Bullet Cluster

    Get PDF
    We analyze a rich dataset including Subaru/SuprimeCam, HST/ACS and WFC3, Keck/DEIMOS, Chandra/ACIS-I, and JVLA/C and D array for the merging galaxy cluster ZwCl 0008.8+5215. With a joint Subaru/HST weak gravitational lensing analysis, we identify two dominant subclusters and estimate the masses to be M200=5.71.8+2.8×1014M_{200}=\text{5.7}^{+\text{2.8}}_{-\text{1.8}}\times\text{10}^{\text{14}}\,\text{M}_{\odot} and 1.20.6+1.4×1014^{+\text{1.4}}_{-\text{0.6}}\times10^{14} M_{\odot}. We estimate the projected separation between the two subclusters to be 924206+243^{+\text{243}}_{-\text{206}} kpc. We perform a clustering analysis on confirmed cluster member galaxies and estimate the line of sight velocity difference between the two subclusters to be 92±\pm164 km s1^{-\text{1}}. We further motivate, discuss, and analyze the merger scenario through an analysis of the 42 ks of Chandra/ACIS-I and JVLA/C and D polarization data. The X-ray surface brightness profile reveals a remnant core reminiscent of the Bullet Cluster. The X-ray luminosity in the 0.5-7.0 keV band is 1.7±\pm0.1×\times1044^{\text{44}} erg s1^{-\text{1}} and the X-ray temperature is 4.90±\pm0.13 keV. The radio relics are polarized up to 40%\%. We implement a Monte Carlo dynamical analysis and estimate the merger velocity at pericenter to be 1800300+400^{+\text{400}}_{-\text{300}} km s1^{-\text{1}}. ZwCl 0008.8+5215 is a low-mass version of the Bullet Cluster and therefore may prove useful in testing alternative models of dark matter. We do not find significant offsets between dark matter and galaxies, as the uncertainties are large with the current lensing data. Furthermore, in the east, the BCG is offset from other luminous cluster galaxies, which poses a puzzle for defining dark matter -- galaxy offsets.Comment: 22 pages, 19 figures, accepted for publication in the Astrophysical Journal on March 13, 201

    Principal Component Analysis of the Time- and Position-Dependent Point Spread Function of the Advanced Camera for Surveys

    Full text link
    We describe the time- and position-dependent point spread function (PSF) variation of the Wide Field Channel (WFC) of the Advanced Camera for Surveys (ACS) with the principal component analysis (PCA) technique. The time-dependent change is caused by the temporal variation of the HSTHST focus whereas the position-dependent PSF variation in ACS/WFC at a given focus is mainly the result of changes in aberrations and charge diffusion across the detector, which appear as position-dependent changes in elongation of the astigmatic core and blurring of the PSF, respectively. Using >400 archival images of star cluster fields, we construct a ACS PSF library covering diverse environments of the HSTHST observations (e.g., focus values). We find that interpolation of a small number (20\sim20) of principal components or ``eigen-PSFs'' per exposure can robustly reproduce the observed variation of the ellipticity and size of the PSF. Our primary interest in this investigation is the application of this PSF library to precision weak-lensing analyses, where accurate knowledge of the instrument's PSF is crucial. However, the high-fidelity of the model judged from the nice agreement with observed PSFs suggests that the model is potentially also useful in other applications such as crowded field stellar photometry, galaxy profile fitting, AGN studies, etc., which similarly demand a fair knowledge of the PSFs at objects' locations. Our PSF models, applicable to any WFC image rectified with the Lanczos3 kernel, are publicly available.Comment: Accepted to PASP. To appear in December issue. Figures are degraded to meet the size limit. High-resolution version can be downloaded at http://acs.pha.jhu.edu/~mkjee/acs_psf/acspsf.pd

    Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography

    Full text link
    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap

    Hubble Space Telescope Weak-lensing Study of the Galaxy Cluster XMMU J2235.3-2557 at z=1.4: A Surprisingly Massive Galaxy Cluster when the Universe is One-third of its Current Age

    Full text link
    We present a weak-lensing analysis of the z=1.4 galaxy cluster XMMU J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the >~ 8 sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r=1 Mpc is (8.5+-1.7) x 10^14 solar mass, where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6_{-1.2}^{+1.3} keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1-sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z >~ 1.4 in the 11 square degree survey is N ~ 0.005. Therefore, the discovery of the cluster within the survey volume is a rare event with a probability < 1%, and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.Comment: Accepted to ApJ for publication. 40 pages and 14 figure
    corecore